

5G and context awareness for MAV communication

Sofie Pollin and Bertold Van den Bergh Zurich, Nov 3, 2014 FLY.net workshop

MAV communication: easy!?

Outline

- The case for Wifi
 - $_{\circ}$ $\,$ Measured and analyzed $\,$
- 5G and MAV
 - $_{\circ}$ $\,$ Drivers for 5G and MAV $\,$
 - Full Duplex as an example

KU LEUVEN

Conclusions

Aerial measured performance order of magnitude worse than on the ground

On-the-ground measured maximum: 176 Mb/s

Bad control causes loss of > factor 2

Total losses > factor 8!

- Impact of Frame?
- MIMO loss?
- Impact of Interference?

Mahdi Asadpour, Bertold Van den Bergh, Domenico Giustiniano, Karin Anna Hummel, Sofie Pollin, and Bernhard Plattner, Micro aerial vehicle networks: an experimental analysis of challenges and opportunities, IEEE Communications Magazine 52(7): 141-149 July 2014

Impact of the frame: reflections

KU LEUVEN

Mahdi Asadpour, Bertold Van den Bergh, Domenico Giustiniano, Karin Anna Hummel, Sofie Pollin, and Bernhard Plattner, **Micro aerial vehicle networks: an experimental analysis of challenges and opportunities**, IEEE Communications Magazine 52(7): 141-149, July 2014

Measurements without the frame: SISO case

Gain of multiple antenna techniques

LOS MIMO

$d \approx \sqrt{\frac{\lambda R}{2}}$ gives **70 cm** at 10m, 2.4 GHz Alternative: two polarizations

KU LEUVEN

[Source: Alcatel Lucent]

SINR could be decreasing with Rx height

J. Nasreddine, J. Riihijärvi, A. Achtzehn, P. Mähönen "The World is Not Flat: Wireless Communications in 3D Environments" Proc. of IEEE WoWMoM 2013, Madrid, Spain, June 2013

3D spectrum sharing

FCC statement: Drones seen driving spectrum sharing technologies

... J. Knapp added that because unmanned aircraft "come in all shapes and sizes" depending on applications, "you have to be concerned about command and control," for example, and emerging capabilities like real-time video....

MAVs have to share spectrum with incumbent (terrestrial) solutions

Google TV White Spaces

10m gives 21 channels

50m gives no channels

Spectrum availability (as of October 31, 2014)

Radio mapping limited by

- Compute power
 - Simple empirical models: high prediction errors at acceptable computational cost [1]:
 - More detailed models: computational cost & accuracy of terrain info
- Model input
 - City databases becoming available
 - Visual SLAM model

[1] Phillips, C.; Sicker, D.; Grunwald, D., "Bounding the error of path loss models," DySPAN 2011

3D spectrum sharing

Outline

- The case for Wifi
 - $_{\circ}$ $\,$ Measured and analyzed $\,$
- 5G and MAV
 - $_{\circ}$ $\,$ Drivers for 5G and MAV $\,$
 - Full Duplex as an example

KU LEUVEN

Conclusions

SDR: meet flexibility in and across standards at low cost

Functional flexibility wanted: within and across standards

[L. Van der Perre - imec]

KU LEUVEN

[Source: Afif Osseiran – Ericsson]

MAV communication requirements

KU LEUVEN

[Source: Afif Osseiran – Ericsson]

FROM MULTI-RAT TO FUSION OF RAT'S

- Two levels of integration: 5G air interface and system: <u>multi-RAT</u>
- Sharing at system level: <u>framework needed</u>

Hans-Peter Mayer "H2020 Phases 2 and 3" - EC Consultation Workshop - 29.09.14 - Brussels http://ec.europa.eu/digital-agenda/en/news/stakeholders-consultation-workshop-network-technologies-work-programme-2016-2017 Alcatel
 Lucent 10

40 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

KU LEUVEN

[Source: Alcatel-Lucent]

4G = SDR5G = SDR + SDN

- Radio features
- Combining carriers: Carrier Aggregation:
- Combining sites: Dual-Connectivity and CoMP
- Combining cellular and WLAN: RAN based interworking
- Network features
- Voice and multimedia with VoLTE and WebRTC
- Combining cellular and WLAN: SaMOG/ePDG
- Policy based networking: ANDSF and PCRF
- Platform features
- Virtualizing cell site processing: vRAN
- Virtualizing network: NFV and SDNs

4.5G HAS ALREADY STARTED AND IS LAYING DOWN THE FOUNDATION TECHNOLOGIES FOR 5G

Alistair Urie – 5G Huddle Conference – 22-23.09.14 – London https://eu-ems.com/summary.asp?event_id=219&page_id=1884

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

KU LEUVEN

[Source: Alcatel-Lucent]

Outline

- The case for Wifi
 - $_{\circ}$ $\,$ Measured and analyzed $\,$
- 5G and MAV
 - $_{\circ}$ $\,$ Drivers for 5G and MAV $\,$
 - Full Duplex as an example

KU LEUVEN

Conclusions

directions for 5G," Communications Magazine, IEEE, vol.52, no.2, pp.74,80, February 2014]

What do we mean with full duplex?

- Simultaneous transmission and reception
- Same time- and frequencyslot

What do we mean with full duplex?

- Simultaneous transmission and reception
- Same time- and frequencyslot •

Self-interference can be up to 110dB for wifi •

Solution to full duplex problem

Recently proven feasible using commodity hardware

[Source: Bharadia et al, Full Duplex Radios]

Protocol design feasible

KU LEUVEN

Network collapse takes 50% longer

Parameters: 3 packets/s of 100 bytes, 10% of all traffic is downlink

Full duplex solves exposed and hidden node problems

5G solutions even more relevant for MAVs?

Experiments in the age of 4G...

Networking test beds: Little control of PHY

Many Nodes

Radio test beds: Not real-time

Spectral Efficiency

Implementation

KU LEUVEN

Day 3

CLAWS: Cross-Layer Adaptable Wireless System

1Month later:

Full software defined implementation of the 802.15.4 PHY, MAC and network layer as baseline for Full Duplex

CLAWS architecture

Host control: LabVIEW VI

FPGA control: Contiki OS running on softcore

Baseband PHY: LabVIEW FPGA

NI PXIe-7966R and NI 5791 RF FAM

CLAWS PHY performance

A simple cross-layer design and experiment

Filter:		Expression	Clear	Apply	Save	
me	Source	Destination	Protocol L	ength Info		
139841000	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	118 Echo	(ping) reply id=0x2431, seq=15	
008849000	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	118 Echo	(ping) request id=0x2431. seq=16	
016298000 (02:12:13:ff:fe:14:15:16	02:00:00:ff:fe:00:ca:	6LoWPAN	133 Data,	Dst: 02:00:00ff:fe:00ca:fe, Src: 02:12:13ff:fe:1415:16	ī
023137000 k	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	58 Echo	(ping) request id=0x2431, seq=16	
113472000 (02:00:00:ff:fe:00:ca:fe	02:12:13:ff:fe:14:15:	6LoWPAN	116 Data,	Dst: 02:12:13ff:fe:1415:16, Src: 02:00:00ff:fe:00ca:fe	1
138764000	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	74 Echo	(ping) reply id=0x2431, seq=16	
139792000	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	118 Echo	(ping) reply id=0x2431, seq=16	
009817000 k	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	118 Echo	(ping) request id=0x2431, seq=17	
016297000 0	02:12:13:ff:fe:14:15:16	02:00:00:ff:fe:00:ca:	6LoWPAN	133 Data,	Dst: 02:00:00ff:fe:00ca:fe, Src: 02:12:13ff:fe:1415:16	
023074000	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	58 Echo	(ping) request id=0x2431, seq=17	
113412000 (02:00:00:ff:fe:00:ca:fe	02:12:13:ff:fe:14:15:	6LoWPAN	116 Data,	Dst: 02:12:13ff:fe:1415:16, Src: 02:00:00ff:fe:00ca:fe	
138689000	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	74 Echo	(ping) reply id=0x2431, seq=17	
139750000 k	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	118 Echo	(ping) reply id=0x2431, seq=17	
010762000 k	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	118 Echo	(ping) request id=0x2431, seq=18	
016295000 0	02:12:13:ff:fe:14:15:16	02:00:00:ff:fe:00:ca:	6LoWPAN	133 Data,	Dst: 02:00:00ff:fe:00ca:fe, Src: 02:12:13ff:fe:1415:16	
022802000	bbbb::101	bbbb::ff:fe00:cafe	ICMPv6	58 Echo	(ping) request id=0x2431, seq=18	
113055000 0	02:00:00:ff:fe:00:ca:fe	02:12:13:ff:fe:14:15:	6LoWPAN	116 Data,	Dst: 02:12:13ff:fe:1415:16, Src: 02:00:00ff:fe:00ca:fe	
138325000	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	74 Echo	(ping) reply id=0x2431, seq=18	
139362000 k	bbbb::ff:fe00:cafe	bbbb::101	ICMPv6	118 Echo	(ping) reply id=0x2431, seq=18	
4						

▪ Frame 1: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface 0

E Ethernet II, Src: MS-NLB-PhysServer-18 13:14:15:16 (02:12:13:14:15:16), Dst: MS-NLB-PhysServer-18 13:14:15:16 (02:12:13:14:15:16)

Type: IPv6 (0x86dd)

```
Internet Protocol Version 6, Src: bbbb::101 (bbbb::101), Dst: bbbb::ff:fe00:cafe (bbbb::ff:fe00:cafe)
```

⊕ 0110 = Version: 6

Traffic class, 0x0000000

0000 02 12 13 14 15 16 02 12 13 14 15 16 86 dd 60 00 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 <	+		0.0	000	000	00									: Т	aft	fic	class. AxAAAAAAAA
0020 00 00 00 01 01 bb bb 00 10 11 (S	0000	02 00	12 00	13 00	14 40	15 3a	16 80	02 bb	12 bb	13 00	14 00	15 00	16 00	86 00	dd 00	60 00	00 00	····.@:
	0020 0030 0040 0050 0060 0070	00 28 12 22 32	00 ff 53 13 23 33	00 fe 00 14 24 34	00 00 15 25	01 ca 00 16 26 36	01 fe 00 17 27 37	bb 80 fd 18 28	bb 00 ff 19 29	00 85 00 1a 2a	00 ff 00 1b 2b	00 24 00 1c 2c	00 31 00 1d 2d	00 00 00 1e 2e	00 0a 00 1f 2f	00 ad 10 20 30	00 ad 11 21 31	

Conclusions

• MAV communication: not just '4G in the air'

- 5G promises range of novel technologies:
 Higher throughput, lower latency, ...
 - More controllability (at PHY and Network!)

• Key: 3D context awareness to exploit this

