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“Flone” 
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Aerial measured performance order of 

magnitude worse than on the ground 

On-the-ground measured maximum: 176 Mb/s 

 

Bad control causes loss of > factor 2 

 

Total losses > factor 8! 

• Impact of Frame? 

• MIMO loss? 

• Impact of Interference? 
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Impact of the frame: reflections 

Mahdi Asadpour, Bertold Van den Bergh, Domenico Giustiniano, Karin Anna Hummel, Sofie Pollin, and Bernhard Plattner,  

Micro aerial vehicle networks: an experimental analysis of challenges and opportunities,  

IEEE Communications Magazine 52(7): 141-149, July 2014.  



Measurements without the frame:  

SISO case 

PHY max throughput: 150 Mbps 

Neglecting PHY overheads 
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Gain of multiple antenna techniques 

STBC gives diversity gain  

T
h
ro

u
g
h
p
u
t 
[M

b
p
s
] 

Distance [m] 

120 

MIMO gain only at very short distances 



LOS MIMO 

[Source: Alcatel Lucent] 

𝑑 ≈ √
𝝀𝑅

2
 gives 70 cm at 10m, 2.4 GHz 

Alternative: two polarizations 



3D propagation: the basics 
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What does that mean for SINR? 
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SINR could be decreasing with Rx height 

J. Nasreddine, J. Riihijärvi, A. Achtzehn, P. Mähönen "The World is Not Flat: Wireless Communications in 3D Environments" 

Proc. of IEEE WoWMoM 2013, Madrid, Spain, June 2013 



3D spectrum sharing 

• FCC statement: Drones seen driving spectrum sharing 

technologies 

 

… J. Knapp added that because unmanned aircraft "come in 

all shapes and sizes" depending on applications, "you have 

to be concerned about command and control," for example, 

and emerging capabilities like real-time video…. 

 

• MAVs have to share spectrum with incumbent (terrestrial) 

solutions 

 



Google TV White Spaces 

10m gives 

21 channels 

 

50m gives 

no channels 

 

 



Radio mapping limited by 

• Compute power 

o Simple empirical models: high prediction errors at 

acceptable computational cost [1]: 

o More detailed models: computational cost & accuracy of 

terrain info 

• Model input 

o City databases becoming 

  available 

o Visual SLAM model 

 

 

[1] Phillips, C.; Sicker, D.; Grunwald, D., "Bounding the error of path loss models," DySPAN 2011 Figure 15. Annotation and reconstruction correction result. The 3D point cloud is colored based on their semantic object categories.

except for axis-aligned bounding boxes, where it suffices to

use a single angle parameter.

Discussion Although the generalized bundle adjustment

is used here with manual annotation, it could potentially be

extended to work with automatic object detection as well

[3, 6]. Just as the standard bundle adjustment requires most

of the point-to-point correspondences to be correct, the

generalized bundle adjustment also requires high-quality

object-to-object correspondences. And it would be inter-

esting as future work to apply existing methods for dealing

with outliers to this new domain (e.g. outlier removal and

robust loss functions for Ψ, such ascauchy, arctan etc.).

6. Conclusion

We introduce SUN3D, a RGB-D video database of big

spaces for place-centric scene understanding. We havepro-

posed a3D reconstruction and labeling tool: it incorporates

semantic labels to obtain an accurate3D reconstruction, and

uses the 3D reconstruction to make an efficient annotation

tool. We propose anovel generalized bundle adjustment al-

gorithm to incorporate object-to-object correspondences as

constraints. We believe that many new algorithms and ap-

plications are enabled by our SUN3D database (e.g. [16]).

All source code, labeling tool, and data are publicly avail-

able to facilitate further research.
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3D spectrum sharing 

3D sharing 

Opportunity 

Scenarios for 
3D spectrum 

sharing 
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SDR: meet flexibility in and across standards 

at low cost 
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Functional flexibility wanted: within and across standards 

[L. Van der Perre - imec] 



 

[Source: Afif Osseiran – Ericsson] 



MAV communication requirements 

 

[Source: Afif Osseiran – Ericsson] 



 

[Source: Alcatel-Lucent] 



4G = SDR 

5G = SDR + SDN 

 

[Source: Alcatel-Lucent] 
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The 5G communication landscape 

4G 

Spectral efficiency Impossible (today) 

Massive M2M high reliability / low latency 

[Boccardi, F; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P., "Five disruptive technology  

directions for 5G," Communications Magazine, IEEE , vol.52, no.2, pp.74,80, February 2014] 

Full  

Duplex 



• Simultaneous transmission and reception 

• Same time- and frequencyslot 

 

 

 

 

 

 

What do we mean with full duplex? 



• Simultaneous transmission and reception 

• Same time- and frequencyslot 

 

Problem: 

 

 

 

 

 

• Self-interference can be up to 110dB for wifi 

What do we mean with full duplex? 



 

 

 

 

 

 

 

 

 

 

Recently proven feasible using  

commodity hardware 

 

 

Solution to full duplex problem 

[Source: Bharadia et al, Full Duplex Radios] 

Protocol design feasible 
 



Network collapse takes 50% longer 

Parameters: 3 packets/s of 100 bytes, 10% of all traffic is downlink 

Energy-Delay 



Full duplex solves exposed and hidden 

node problems 



5G solutions even more relevant for 

MAVs? 

higher 

More sensitive to interference 

(from even further hidden nodes) 

Can we prove this!? 



Experiments in the age of 4G… 

Networking test beds: 

Little control of PHY 

Radio test beds: 

Not real-time 

Many Nodes Spectral Efficiency 



CLAWS: Cross-Layer Adaptable 

Wireless System 

Full software defined implementation of the 802.15.4 PHY, 

MAC and network layer as baseline for Full Duplex 

Implementation 

Day 1 

Day 2 

Day 3 

Day 4 

1Month later: 



CLAWS architecture 

NI PXIe-7966R and 

NI 5791 RF FAM 

Baseband PHY: 

LabVIEW FPGA 

FPGA control: 

Contiki OS running 

on softcore 

Host control: 

LabVIEW VI 

Implementation 



CLAWS PHY performance 



CLAWS timing breakdown 



A simple cross-layer design and experiment 





Conclusions 

• MAV communication: not just ‘4G in the air’ 

 

 

• 5G promises range of novel technologies: 

o Higher throughput, lower latency, … 

o More controllability (at PHY and Network!) 

 

 

• Key: 3D context awareness to exploit this 

Figure 15. Annotation and reconstruction correction result. The 3D point cloud is colored based on their semantic object categories.

except for axis-aligned bounding boxes, where it suffices to

use a single angle parameter.

Discussion Although the generalized bundle adjustment

is used here with manual annotation, it could potentially be

extended to work with automatic object detection as well

[3, 6]. Just as the standard bundle adjustment requires most

of the point-to-point correspondences to be correct, the

generalized bundle adjustment also requires high-quality

object-to-object correspondences. And it would be inter-

esting as future work to apply existing methods for dealing

with outliers to this new domain (e.g. outlier removal and

robust loss functions for Ψ, such ascauchy, arctan etc.).

6. Conclusion

We introduce SUN3D, a RGB-D video database of big

spaces for place-centric scene understanding. We havepro-

posed a3D reconstruction and labeling tool: it incorporates

semantic labels to obtain an accurate3D reconstruction, and

uses the 3D reconstruction to make an efficient annotation

tool. We propose anovel generalized bundle adjustment al-

gorithm to incorporate object-to-object correspondences as

constraints. We believe that many new algorithms and ap-

plications are enabled by our SUN3D database (e.g. [16]).

All source code, labeling tool, and data are publicly avail-

able to facilitate further research.
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Questions? 



 


